Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.0 MB byte)

Title: Numerical modeling of coupled water flow and heat transport in soil and snow

Author: Kelleners, Thijs J.; Koonce, Jeremy; Shillito, Rose; Dijkema, Jelle; Berli, Markus; Young, Michael H.; Frank, John M.; Massman, William;

Date: 2016

Source: Soil Science Society of America. 80: 247-263.

Publication Series: Scientific Journal (JRNL)

Description: A one-dimensional vertical numerical model for coupled water flow and heat transport in soil and snow was modified to include all three phases of water: vapor, liquid, and ice. The top boundary condition in the model is driven by incoming precipitation and the surface energy balance. The model was applied to three different terrestrial systems: A warm desert bare lysimeter soil in Boulder City, NV; a cool mixed-grass rangeland soil near Laramie, WY; and a snow-dominated mountainous forest soil about 50 km west of Laramie, WY. Comparison of measured and calculated soil water contents with depth yielded modeling efficiency (ME) values (maximum range: -∞< ME ≤ 1) of 0.32 ≤ ME ≤ 0.75 for the bare soil, 0.05 ≤ ME ≤ 0.30 for the rangeland soil, and 0.06 ≤ ME ≤ 0.37 for the forest soil. Results for soil temperature with depth were 0.87 ≤ ME ≤ 0.91 for the bare soil, 0.92 ≤ ME ≤ 0.94 for the rangeland soil, and 0.85 ≤ ME ≤ 0.88 for the forest soil. The model described the mass change in the bare soil lysimeter due to outgoing evaporation with moderate accuracy (ME = 0.41, based on 4 yr of data and using weekly evaporation rates). Snow height for the rangeland soil and the forest soil was captured reasonably well (ME = 0.57 for both sites based on 5 yr of data for each site). The model is physics based, with few empirical parameters, making it applicable to a wide range of terrestrial ecosystems.

Keywords: water flow, heat transport, soil, snow, model

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Kelleners, Thijs J.; Koonce, Jeremy; Shillito, Rose; Dijkema, Jelle; Berli, Markus; Young, Michael H.; Frank, John M.; Massman, W. J. 2016. Numerical modeling of coupled water flow and heat transport in soil and snow. Soil Science Society of America. 80: 247-263.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.