Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (3.0 MB bytes)

Title: Laboratory and exterior decay of wood plastic composite boards: voids analysis and computed tomography

Author: Sun, Grace; Ibach, Rebecca E.; Faillace, Meghan; Gnatowski, Marek; Glaeser, Jessie A.; Haight, John;

Date: 2016

Source: Wood Material Science & Engineering

Publication Series: Scientific Journal (JRNL)

Description: After exposure in the field and laboratory soil block culture testing, the void content of wood–plastic composite (WPC) decking boards was compared to unexposed samples. A void volume analysis was conducted based on calculations of sample density and from micro-computed tomography (microCT) data. It was found that reference WPC contains voids of different sizes from the micrometer range up to several cubic millimeters. Large voids were unevenly distributed within the composite sample. Void size and volume increased after conditioning the WPC in water at 70°C. Depending on the effect of exposure conditions, fungal decay during laboratory soil block testing increased the size and volume of voids. For laboratory samples, the calculated void volume was much higher compared to microCT-detected voids because of the limited resolution of the instrument on relatively large samples with many nano- and microvoids present in the material. In both laboratory and field samples, the creation of the voids resulted in a significant decrease in composite density. Decay damage observed as an increase in the size and volume of voids was particularly severe for boards exposed in the field. The calculated void volume in such samples was in reasonable agreement with voids detected by microCT.

Keywords: CT, exterior exposure, fungi, microstructure, scanning electron microscopy, soil block culture test weathering

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Sun, Grace; Ibach, Rebecca E.; Faillace, Meghan; Gnatowski, Marek; Glaeser, Jessie A.; Haight, John 2016. Laboratory and exterior decay of wood plastic composite boards: voids analysis and computed tomography. Wood Material Science and Engineering. DOI: 10.1080/17480272.2016.1164755. 16 pp.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.