Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (801.0 KB bytes)

Title: Life-Cycle Assessment of a Distributed-Scale Thermochemical Bioenergy Conversion System

Author: Gu, Hongmei; Bergman, Richard;

Date: 2016

Source: Wood and Fiber Science, 48(2), 2016, pp. 129-141; 2016.

Publication Series: Scientific Journal (JRNL)

Description: Expanding bioenergy production from woody biomass has the potential to decrease net greenhouse gas (GHG) emissions and improve the energy security of the United States. Science-based and internationally accepted life-cycle assessment (LCA) is an effective tool for policy makers to make scientifically informed decisions on expanding renewable energy production from newly developed bioenergy technologies. A distributed-scale high-temperature thermochemical conversion system, referred to as the Tucker renewable natural gas (RNG) unit, was evaluated for producing medium-energy synthesis gas (syngas) and biochar along with its waste from harvested woody biomass. Mass and energy balances, cumulative energy demand, and life-cycle inventory (LCI) flows were calculated based on operational data from a 1-h continuous run. Emissions data summarized from the cradle-to-gate LCI showed biomass and fossil CO2 emissions of 0.159 and 0.534 kg, respectively, for each oven-dry (OD) kilogram of wood chips pyrolyzed. LCA, applied in accordance with International Organization for Standardization standards, was used to determine the potential environmental impacts. Total GHG was 0.595 kg CO2 eq per OD kilogram of wood chips processed. Contributions to total GHG were 20.7% from upstream forest resource extraction and chip processing at sawmills and 77.6% from the thermochemical conversion process with propane combustion. The remaining 1.62% was from parasitic electricity operating the Tucker RNG unit. Quantifying global warming showed the carbon benefits (eg, low GHG emissions) along with the carbon hotspots from burning propane to maintain the endothermic reaction in the Tucker RNG unit. The use of low-energy syngas generated from what was originally a waste in the pyrolysis reaction to augment propane combustion would decrease GHG emissions (ie, fossil CO2) by about 30.4%.

Keywords: Thermochemical pyrolysis conversion, syngas, biochar, woody biomass, life-cycle inventory (LCI), life-cycle assessment (LCA)

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Gu, Hongmei; Bergman, Richard. 2016. Life-cycle assessment of a distributed-scale thermochemical bioenergy conversion system. Wood and Fiber Science. 48(2): 129-141.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.