Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.0 MB byte)

Title: Maximum likelihood estimation of the parameters of a bivariate Gaussian-Weibull distribution from machine stress-rated data

Author: Verrill, Steve P.; Kretschmann, David E.; Evans, James W.;

Date: 2016

Source: USDA Forest Service, Forest Products Laboratory, Research Paper, FPL-RP-685

Publication Series: Research Paper (RP)

Description: Two important wood properties are stiffness (modulus of elasticity, MOE) and bending strength (modulus of rupture, MOR). In the past, MOE has often been modeled as a Gaussian and MOR as a lognormal or a two- or threeparameter Weibull. It is well known that MOE and MOR are positively correlated. To model the simultaneous behavior of MOE and MOR for the purposes of wood system reliability calculations, a 2012 paper by Verrill, Evans, Kretschmann, and Hatfield introduced a bivariate Gaussian–Weibull distribution and the associated pseudo-truncated Weibull. In that paper, they obtained an asymptotically efficient estimator of the parameter vector of the bivariate Gaussian– Weibull. This estimator requires data from the full bivariate MOE,MOR distribution. In practice, such data are often not available. Instead, in some cases “Machine Stress-Rated” (MSR) data are available. An MSR data set consists of MOE,MOR pairs, where a pair is accepted into the data set (a piece of lumber is accepted) if and only if the MOE value lies between predetermined lower and upper bounds. For such a data set, the asymptotically efficient methods appropriate for a full data set cannot be used. In this paper we present an approach that is effective for MSR data.

Keywords: reliability, modulus of rupture, modulus of elasticity, normal distribution, Weibull distribution, bivariate Gaussian-Weibull distribution, bivariate normal-Weibull distribution, pseudo-truncated Weibull distribution, likelihood methods, machine stress-rated data, MSR data

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Verrill, Steve P.; Kretschmann, David E.; Evans, James W. 2016. Maximum likelihood estimation of the parameters of a bivariate Gaussian-Weibull distribution from machine stress-rated data. Research Paper, FPL-RP-685. Madison, WI. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 72 p.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.