Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (514.0 KB bytes)

Title: Clusters of incompatible genotypes evolve with limited dispersal

Author: Landguth, Erin L.; Johnson, Norman A.; Cushman, Samuel A.;

Date: 2015

Source: Frontiers in Genetics. doi: 10.3389/fgene.2015.00151.

Publication Series: Scientific Journal (JRNL)

Description:

Theoretical and empirical studies have shown heterogeneous selection to be the primary driver for the evolution of reproductively isolated genotypes in the absence of geographic barriers. Here, we ask whether limited dispersal alone can lead to the evolution of reproductively isolated genotypes despite the absence of any geographic barriers or heterogeneous selection. We use a spatially-explicit, individual-based, landscape genetics program to explore the influences of dispersal strategies on reproductive isolation. We simulated genetic structure in a continuously distributed population and across various dispersal strategies (ranging from short- to long-range individual movement), as well as potential mate partners in entire population (ranging from 20 to 5000 individuals). We show that short-range dispersal strategies lead to the evolution of clusters of reproductively isolated genotypes despite the absence of any geographic barriers or heterogeneous selection. Clusters of genotypes that are reproductively isolated from other clusters can persist when migration distances are restricted such that the number of mating partners is below about 350 individuals. We discuss how our findings may be applicable to particular speciation scenarios, as well as the need to investigate the influences of heterogeneous gene flow and spatial selection gradients on the emergence of reproductively isolating genotypes.

Keywords: CDPOP, Dobzhansky-Muller incompatibilities, individual-based simulations, landscape genetics, movement strategies, speciation

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Landguth, Erin L.; Johnson, Norman A.; Cushman, Samuel A. 2015. Clusters of incompatible genotypes evolve with limited dispersal. Frontiers in Genetics. doi: 10.3389/fgene.2015.00151.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.