Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (2.0 MB bytes)

Title: Hydrological processes and model representation: impact of soft data on calibration

Author: Arnold, J.G.; Youssef, M.A.; Yen, H.; White, M.J.; Sheshukov, A.Y.; Sadeghi, A.M.; Moriasi, D.N.; Steiner, J.L.; Amatya, Devendra; Skaggs, R.W.; Haney, E.B.; Jeong, J.; Arabi, M.; Gowda, P.H.;

Date: 2015

Source: American Society of Agricultural and Biololgical Engineers

Publication Series: Scientific Journal (JRNL)

Description: Hydrologic and water quality models are increasingly used to determine the environmental impacts of climate variability and land management. Due to differing model objectives and differences in monitored data, there are currently no universally accepted procedures for model calibration and validation in the literature. In an effort to develop accepted model calibration and validation procedures or guidelines, a special collection of 22 research articles that present and discuss calibration strategies for 25 hydrologic and water quality models was previously assembled. The models vary in scale temporally as well as spatially from point source to the watershed level. One suggestion for future work was to synthesize relevant information from this special collection and to identify significant calibration and validation topics. The objective of this article is to discuss the importance of accurate representation of model processes and its impact on calibration and scenario analysis using the information from these 22 research articles and other relevant literature. Models are divided into three categories: (1) flow, heat, and solute transport, (2) field scale, and (3) watershed scale. Processes simulated by models in each category are reviewed and discussed. In this article, model case studies are used to illustrate situations in which a model can show excellent statistical agreement with measured stream gauge data, while misrepresented processes (water balance, nutrient balance, sediment source/sinks) within a field or watershed can cause errors when running management scenarios. These errors may be amplified at the watershed scale where additional sources and transport processes are simulated. To account for processes in calibration, a diagnostic approach is recommended using both hard and soft data. The diagnostic approach looks at signature patterns of behavior of model outputs to determine which processes, and thus parameters representing them, need further adjustment during calibration. This overcomes the weaknesses of traditional regression-based calibration by discriminating between multiple processes within a budget. Hard data are defined as long-term, measured time series, typically at a point within a watershed. Soft data are defined as information on individual processes within a budget that may not be directly measured within the study area, may be just an average annual estimate, and may entail considerable uncertainty. The advantage of developing soft data sets for calibration is that they require a basic understanding of processes (water, sediment, nutrient, and carbon budgets) within the spatial area being modeled and constrain the calibration.

Keywords: Calibration, field-scale models, point models, validation, watershed models.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Arnold, J.G.; Youssef, M.A.; Yen, H.; White, M.J.; Sheshukov, A.Y.; Sadeghi, A.M.; Moriasi, D.N.; Steiner, J.L.; Amatya, D.M.; Skaggs, R.W.; Haney, E.B.; Jeong, J.; Arabi, M.; Gowda, P.H. 2015. Hydrological processes and model representation: impact of soft data on calibration. American Society of Agricultural and Biololgical Engineers Vol. 58(6): 1637-1660.  24 p.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.