Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (2.0 MB bytes)

Title: Groundwater availability mediates the ecosystem effects of an invasion of Prosopis pallida

Author: Dudley, Bruce D.; Hughes, Flint; Ostertag, Rebecca;

Date: 2014

Source: Ecological Applications. 24(8): 1954-1971

Publication Series: Scientific Journal (JRNL)

Description: Groundwater levels in arid environments are dropping worldwide due to human extraction, and precipitation events are predicted to become rarer and more intense in many arid areas with global climate change. These changes will likely alter both primary productivity and plant–soil nutrient cycles. To better understand the nature of such alterations, we examined effects of groundwater availability on plant–soil nitrogen (N) cycling in areas invaded by the N-fixing phreatophyte, Prosopis pallida, on the dry leeward coast of Hawai‘i Island. Our aims were to quantify effects of groundwater availability to P. pallida on rates of litterfall N inputs and accretion in soils and to quantify effects of groundwater availability on N mineralization and leaching rates of inorganic N under natural rainfall conditions and simulated rain events. Stem water δ18O values indicate that P. pallida trees in lowland plots accessed shallow groundwater, while in upland plots they relied solely on rainfall. During drought periods, P. pallida at upland plots experienced water stress, evidenced by lower stem water potentials, higher water-use efficiency, and lower predawn photosynthetic performance than at lowland plots. Prosopis pallida basal area was 5.3 times greater at lowland plots, and these plots exhibited 17 times higher carbon (C), 24 times higher N, and 35 times higher phosphorus (P) additions via litterfall, indicating that productivity of this phreatophyte was decoupled from rainfall where groundwater was present. Total N mass in soils was 4.7 times greater where groundwater was accessible, supporting the case that groundwater access increased N2 fixation at a stand level. In contrast, N mineralization and leaching losses from soils, though substantially greater in lowland relative to upland areas, were strongly controlled by rainfall. Results provide clear examples of how invasive species with particular functional attributes (i.e., N-fixing phreatophytes) exploit otherwise inaccessible resources to dramatically alter the functioning of the systems they invade and how anthropogenic changes to hydrological processes can also alter ecosystem-level impacts of biological invasions. Results also illustrate a mechanism by which regional groundwater drawdown may reduce soil nutrient accretion and availability in arid regions.

Keywords: 15N, 18O, arid, carbon, groundwater, Hawai‘i Island, invasion, leaching, litterfall, mesquite, phosphorus, Prosopis pallida

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.



Dudley, Bruce D.; Flint Hughes, R.; Ostertag, Rebecca 2014. Groundwater availability mediates the ecosystem effects of an invasion of Prosopis pallida. Ecological Applications. 24(8): 1954-1971.


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.