Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.0 MB byte)

Title: Imputation of individual longleaf pine (Pinus palustris Mill.) tree attributes from field and LiDAR data

Author: Silva, Carlos A.; Hudak, Andrew T.; Vierling, Lee A.; Loudermilk, E. Louise; O'Brien, Joseph J.; Hiers, J. Kevin; Jack, Steve B.; Gonzalez-Benecke, Carlos; Lee, Heezin; Falkowski, Michael J.; Khosravipour, Anahita;

Date: 2016

Source: Canadian Journal of Remote Sensing. 42(5): 554-573.

Publication Series: Scientific Journal (JRNL)

Description: Light Detection and Ranging (LiDAR) has demonstrated potential for forest inventory at the individual-tree level. The aim in this study was to predict individual-tree height (Ht; m), basal area (BA; m2), and stem volume (V; m3) attributes, imputing Random Forest k-nearest neighbor (RF k-NN) and individual-tree-level-based metrics extracted from a LiDAR-derived canopy height model (CHM) in a longleaf pine (Pinus palustris Mill.) forest in southwestern Georgia, United States. We developed a new framework for modeling tree-level forest attributes that comprise 3 steps: (i) individual tree detection, crown delineation, and tree-level-based metrics computation from LiDAR-derived CHM; (ii) automatic matching of LiDAR-derived trees and field-based trees for a regression modeling step using a novel algorithm; and (iii) RF k-NN imputation modeling for estimating tree-level Ht, BA, and V and subsequent summarization of these metrics at the plot and stand levels. RMSDs for tree-level Ht, BA, and V were 2.96%, 58.62%, and 8.19%, respectively. Although BA estimation accuracy was poor because of the longleaf pine growth habitat, individual-tree locations, Ht, and V were estimated with high accuracy, especially in low-canopy-cover conditions. Future efforts based on the findings could help improve the estimation accuracy of individual-tree-level attributes such as BA.

Keywords: Light Detection and Ranging, LiDAR, longleaf pine, Pinus palustris

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Silva, Carlos A.; Hudak, Andrew T.; Vierling, Lee A.; Loudermilk, E. Louise; O'Brien, Joseph J.; Hiers, J. Kevin; Jack, Steve B.; Gonzalez-Benecke, Carlos; Lee, Heezin; Falkowski, Michael J.; Khosravipour, Anahita. 2016. Imputation of individual longleaf pine (Pinus palustris Mill.) tree attributes from field and LiDAR data. Canadian Journal of Remote Sensing. 42(5): 554-573.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.