Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (544.0 KB bytes)

Title: Bioenergy harvest impacts to biodiversity and resilience vary across aspen-dominated forest ecosystems in the Lake States region, USA

Author: Curzon, Miranda T.; D'Amato, Anthony W.; Palik, Brian J.; Verheyen, Kris;

Date: 2016

Source: Applied Vegetation Science. 12 p. doi:10.1111/avsc.12256

Publication Series: Scientific Journal (JRNL)

Description: Questions: Does the increase in disturbance associated with removing harvest residues negatively impact biodiversity and resilience in aspen-dominated forest ecosystems? How do responses of functional diversity measures relate to community recovery and standing biomass? Location: Aspen (Populus tremuloides, Michx.) mixedwood forests in Minnesota andMichigan, USA. Methods: Three levels for two factors, organicmatter removal and compaction, were fully crossed, resulting in nine experimental treatments that spanned a range of disturbance severity. Each treatment was replicated three times at each of three sites dominated by the same tree species but having different soil textures (clay, silty loam, sandy). Community composition and taxonomic diversity (species richness, species evenness, Shannon diversity index) were quantified based on woody species abundance sampled 5, 10 and 15 yr after disturbance. Community composition response was assessed using non-metric multidimensional scaling. Functional diversity (functional richness, evenness, dispersion and divergence) was also estimated using eight species effect and response traits. Finally, we examined community recovery as well as responses of species and functional diversity to disturbance severity over time using repeated measures ANOVA. Results: Two responses indicated a potentially negative impact of whole-tree harvest relative to conventional, stem-only harvest: functional richness on silty loam soils and species evenness on clayey soils. Otherwise, negative impacts were restricted to forest floor removal or increased compaction. Recovery in community composition was reduced by the most severe treatments, particularly forest floor removal, across the study, but the responses of functional and taxonomic diversity varied among sites, with some measures increasing as a result of severe disturbance. Conclusions: Maximization of standing biomass may mean a short-term sacrifice in species and functional diversity. Also, examinations of forest management impacts on species and functional diversity and composition should apply multiple metrics and indices to ensure potential impacts are not obscured by the reliance on a single approach.

Keywords: Aspen, Biodiversity, Bioenergy harvest, Community composition, Disturbance, Functional diversity, Populus tremuloides, Recovery, Resilience

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.



Curzon, Miranda T.; D'Amato, Anthony W.; Palik, Brian J.; Verheyen, Kris 2016. Bioenergy harvest impacts to biodiversity and resilience vary across aspen-dominated forest ecosystems in the Lake States region, USA. Applied Vegetation Science. 12 p. doi:10.1111/avsc.12256


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.