Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.0 MB byte)

Title: Hirabayashi, Satoshi; Kroll, Charles N.; Nowak, David J. 2011. Component-based development and sensitivity analyses of an air pollutant dry deposition model. Environmental Modelling & Software. 26(6): 804-816.

Author: Hirabayashi, Satoshi; Kroll, Chuck; Nowak, David;

Date: 2011

Source: Environmental Modeling and Software. 26:804-816.

Publication Series: Scientific Journal (JRNL)

Description: The Urban Forest Effects-Deposition model (UFORE-D) was developed with a component-based modeling approach. Functions of the model were separated into components that are responsible for user interface, data input/output, and core model functions. Taking advantage of the component-based approach, three UFORE-D applications were developed: a base application to estimate dry deposition at an hourly time step, and two sensitivity analyses based on Monte Carlo simulations with a Latin hypercube sampling (LHS-MC) and a Morris one-at-a-time (MOAT) sensitivity test. With the base application, dry deposition of CO, NO2, O3, PM10, and SO2 in the city of Baltimore was estimated for 2005. The sensitivity applications were performed to examine UFORE-D model parameter sensitivity. In general, dry deposition velocity was sensitive to temperature and leaf area index (LAI). Temperature had a non-linear effect on all pollutants, while LAI was important to NO2 deposition with a nearly linear effect. PAR and wind speed had limited effects on dry deposition of all pollutants; dry deposition was affected by PAR and wind speed only up to their threshold values. The component-based approach allows for seamless integration of new model elements, and provides model developers with a platform to easily interchange model components.

Keywords: Air pollutant, Dry deposition, Component-based model, UFORE, Sensitivity analysis

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Hirabayashi,; Satoshi, Kroll, Charles N.; Nowak, David J. 2011. Component-based development and sensitivity analyses of an air pollutant dry deposition model. Environmental Modeling and Software. 26:804-816.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.