Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.0 MB byte)

Title: AEGIS: a wildfire prevention and management information system

Author: Kalabokidis, Kostas; Ager, Alan; Finney, Mark; Athanasis, Nikos; Palaiologou, Palaiologos; Vasilakos, Christos;

Date: 2016

Source: Natural Hazards and Earth System Sciences. 16: 643-661.

Publication Series: Scientific Journal (JRNL)

Description:

We describe a Web-GIS wildfire prevention and management platform (AEGIS) developed as an integrated and easy-to-use decision support tool to manage wildland fire hazards in Greece (http://aegis.aegean.gr). The AEGIS platform assists with early fire warning, fire planning, fire control and coordination of firefighting forces by providing online access to information that is essential for wildfire management. The system uses a number of spatial and non-spatial data sources to support key system functionalities. Land use/land cover maps were produced by combining field inventory data with high-resolution multispectral satellite images (RapidEye). These data support wildfire simulation tools that allow the users to examine potential fire behavior and hazard with the Minimum Travel Time fire spread algorithm. End-users provide a minimum number of inputs such as fire duration, ignition point and weather information to conduct a fire simulation. AEGIS offers three types of simulations, i.e., single-fire propagation, point-scale calculation of potential fire behavior, and burn probability analysis, similar to the FlamMap fire behavior modeling software. Artificial neural networks (ANNs) were utilized for wildfire ignition risk assessment based on various parameters, training methods, activation functions, pre-processing methods and network structures. The combination of ANNs and expected burned area maps are used to generate integrated output map of fire hazard prediction. The system also incorporates weather information obtained from remote automatic weather stations and weather forecast maps. The system and associated computation algorithms leverage parallel processing techniques (i.e., High Performance Computing and Cloud Computing) that ensure computational power required for real-time application. All AEGIS functionalities are accessible to authorized end-users through a web-based graphical user interface. An innovative smartphone application, AEGIS App, also provides mobile access to the webbased version of the system.

Keywords: wildfire, prevention, management, wildland fire

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Kalabokidis, Kostas; Ager, Alan; Finney, Mark; Athanasis, Nikos; Palaiologou, Palaiologos; Vasilakos, Christos. 2016. AEGIS: a wildfire prevention and management information system. Natural Hazards and Earth System Sciences. 16: 643-661.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.