Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (741.0 KB bytes)

Title: Foliar loading and metabolic assimilation of dry deposited nitric acid air pollutants by trees

Author: Padgett, Pamela E.; Cook, Hillary; Bytnerowicz, Andrzej; Heath, Robert L.;

Date: 2009

Source: J. Environ. Monit. 11(1): 75-84

Publication Series: Scientific Journal (JRNL)

Description:

Dry deposition of nitric acid vapor (HNO(3)) is a major contributor to eutrophication of natural ecosystems. Although soil fertilization by nitrogen deposition is considered to be the primary pathway for changes in plant nutrient status and shifts in ecological structure, the aerial portion of plants offer many times the surface area in which to collect atmospheric HNO(3). As much as 60% of deposited nitrogen may be retained in the canopy and not land on the soil surface below. Although uptake and assimilation appears to contribute to retention, only a small percentage of dry deposition is recovered in assimilated N pools. To test the importance of biological activity on the process and measurements of dry deposition, we used controlled environmental chambers to compare deposition to living and freeze-dried foliage of four tree species using (15)N-labeled HNO(3). In living trees, assimilation was determined by (15)N incorporation into free amino acids and proteins in leaves and roots. From 10% to 60% of the retained HNO(3) was incorporated into the biologically active nitrogen pool. The remainder was bound to foliar surfaces in an insoluble form in either living or freeze-dried foliage. The importance of the boundary layer conditions emerged as a primary factor controlling dry deposition characteristics and measurements.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Padgett, Pamela E.; Cook, Hillary; Bytnerowicz, Andrzej; Heath, Robert L. 2009. Foliar loading and metabolic assimilation of dry deposited nitric acid air pollutants by trees. J. Environ. Monit. 11(1): 75-84.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.