Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (2.0 MB bytes)

Title: Development of a fire weather index using meteorological observations within the Northeast United States

Author: Erickson, Michael J.; Charney, Joseph J.; Colle, Brian A.;

Date: 2016

Source: Journal of Applied Meteorology and Climatology. 55(2): 389-402.

Publication Series: Scientific Journal (JRNL)

Description: A fire weather index (FWI) is developed using wildfire occurrence data and Automated Surface Observing System weather observations within a subregion of the northeastern United States (NEUS) from 1999 to 2008. Average values of several meteorological variables, including near-surface temperature, relative humidity, dewpoint, wind speed, and cumulative daily precipitation, are compared on observed wildfire days with their climatological average ("climatology") using a bootstrap resampling approach. Average daily minimum relative humidity is significantly lower than climatology on wildfire occurrence days, and average daily maximum temperature and average daily maximum wind speed are slightly higher on wildfire occurrence days. Using the potentially important weather variables (relative humidity, temperature, and wind speed) as inputs, different formulations of a binomial logistic regression model are tested to assess the potential of these atmospheric variables for diagnosing the probability of wildfire occurrence. The FWI is defined using probabilistic output from the preferred binomial logistic regression configuration. Relative humidity and temperature are the only significant predictors in the binomial logistic regression. The binomial logistic regression model is reliable and has more probabilistic skill than climatology using an independent verification dataset. Using the binomial logistic regression output probabilities, an FWI is developed ranging from 0 (minimum potential) to 3 (high potential) and is verified independently for two separate subdomains within the NEUS. The climatology of the FWI reproduces observed fire occurrence probabilities between 1999 and 2008 over a subdomain of the NEUS.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Erickson, Michael J.; Charney, Joseph J.; Colle, Brian A. 2016. Development of a fire weather index using meteorological observations within the Northeast United States. Journal of Applied Meteorology and Climatology. 55(2): 389-402.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.