Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.0 MB byte)

Title: Statistical rigor in LiDAR-assisted estimation of aboveground forest biomass

Author: Gregoire, Timothy G.; Næsset, Erik; McRoberts, Ronald E.; Ståhl, Göran; Andersen, Hans; Gobakken, Terje; Ene, Liviu; Nelson, Ross;

Date: 2016

Source: Remote Sensing of Environment

Publication Series: Scientific Journal (JRNL)

Description: For many decades remotely sensed data have been used as a source of auxiliary information when conducting regional or national surveys of forest resources. In the past decade, airborne scanning LiDAR (Light Detection and Ranging) has emerged as a promising tool for sample surveys aimed at improving estimation of aboveground forest biomass. This technology is now employed routinely in forest management inventories of some Nordic countries, and there is eager anticipation for its application to assess changes in standing biomass in vast tropical regions of the globe in concert with the UN REDD program to limit C emissions. In the rapidly expanding literature on LiDAR-assisted biomass estimation the assessment of the uncertainty of estimation varies widely, ranging from statistically rigorous to ad hoc. In many instances, too, there appears to be no recognition of different bases of statistical inference which bear importantly on uncertainty estimation. Statistically rigorous assessment of uncertainty for four large LiDAR-assisted surveys is expounded.

Keywords: Sampling, Statistical inference, Variance estimation.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Gregoire, Timothy G.; Næsset, Erik; McRoberts, Ronald E.; Ståhl, Göran; Andersen, Hans-Erik; Gobakken, Terje; Ene, Liviu; Nelson, Ross 2016. Statistical rigor in LiDAR-assisted estimation of aboveground forest biomass. Remote Sensing of Environment. 173: 98-108.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.