Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (710.0 KB bytes)

Title: Mechanical and time-dependent behavior of wood-plastic composites subjected to bending

Author: Hamel, S. E.; Hermanson, John; Cramer, S. M.;

Date: 2015

Source: Journal of Thermoplastic Composite Materials

Publication Series: Scientific Journal (JRNL)

Description: The most popular use of wood–plastic composite (WPC) members in the United States has been as outdoor decking material in residential construction. If the use of these products expands into more structural applications, such as beams and joists, it is imperative that the material’s mechanical behavior be understood. Since most of the potential structural uses of this material are as flexural members, it is particularly important that the response to this mode of loading is well characterized. Like many filled polymers, WPCs are anisotropic and bimodal, and thus their shear and two axial moduli (tension and compression) must be determined separately. This study determined the shear and axial moduli of six WPC formulations (mainly polypropylene, high-density polyethylene, and low-density polyethylene) by testing prismatic members in bending at multiple span-to-depth ratios. The initial moduli were determined from constant strain rate tests, and their time dependencies were found using creep tests. The resulting axial-to-shear moduli ratios were shown to be greater than 25 for all formulations. The ratios were relatively constant over time at low stress levels, while decreasing over time at high stress levels.

Keywords: Creep, wood–polymer composite, power law, shear, anisotropic, bimodal

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Hamel, Scott E.; Hermanson, John C.; Cramer, Steven M. 2015. Mechanical and time-dependent behavior of wood-plastic composites subjected to bending. Journal of Thermoplastic Composite Materials. 28(5): 630-642.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.