Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (537.0 KB bytes)

Title: Generalized and synthetic regression estimators for randomized branch sampling

Author: Affleck, David L. R.; Gregoire, Timothy G.;

Date: 2015

Source: Forestry. 88: 599-611.

Publication Series: Scientific Journal (JRNL)

Description:

In felled-tree studies, ratio and regression estimators are commonly used to convert more readily measured branch characteristics to dry crown mass estimates. In some cases, data from multiple trees are pooled to form these estimates. This research evaluates the utility of both tactics in the estimation of crown biomass following randomized branch sampling (RBS). Synthetic generalized regression (GREG) estimators are developed, and their properties examined against standard estimators. It is shown that synthetic GREG estimators with zero or low design-bias can be obtained, and that the variance of a design-unbiased class of GREG estimators can be unbiasedly estimated. Simulated sampling from 20 censused crowns of two Rocky Mountain species indicated that improvements in accuracy can be obtained through GREG estimation following RBS. Simulations also showed that synthetic GREG estimators that pool data from multiple trees can stabilize coefficients of multivariate regression models to provide improved accuracy over direct GREG estimators. However, for the univariate regression models that proved most adept for the censused crowns, direct GREG estimation provided the lowest average root mean squared error (RMSE) for RBS. Simulations also showed that model-based branch aggregation estimators have generally low RMSE but can be heavily design-biased. For the crown forms studied, use of branch auxiliary information at both the design and estimation stages through RBS and GREG estimation appears to be more efficient than using the information only at the estimation stage following simple or stratified random sampling.

Keywords: randomized branch sampling (RBS), ratio and regression estimators, Synthetic generalized regression (GREG)

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Affleck, David L. R.; Gregoire, Timothy G. 2015. Generalized and synthetic regression estimators for randomized branch sampling. Forestry. 88: 599-611.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.