Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (994.0 KB bytes)

Title: Temporal correlations in population trends: Conservation implications from time-series analysis of diverse animal taxa

Author: Keith, David; Akcakaya, H. Resit; Butchart, Stuart H.M.; Collen, Ben; Dulvy, Nicholas K.; Holmes, Elizabeth E.; Hutchings, Jeffrey A.; Keinath, Doug; Schwartz, Michael K.; Shelton, Andrew O.; Waples, Robin S.;

Date: 2015

Source: Biological Conservation. 192: 247-257.

Publication Series: Scientific Journal (JRNL)

Description:

Population trends play a large role in species risk assessments and conservation planning, and species are often considered threatened if their recent rate of decline meets certain thresholds, regardless how large the population is. But how reliable an indicator of extinction risk is a single estimate of population trend? Given the integral role this decline-based approach has played in setting conservation priorities, it is surprising that it has undergone little empirical scrutiny. We compile an extensive global dataset of time series of abundance data for over 1300 vertebrate populations to provide the first major test of the predictability of population growth rates in nature. We divided each time series into assessment and response periods and examined the correlation between growth rates in the two time periods. In birds, population declines tended to be followed by further declines, but mammals, salmon, and other bony fishes showed the opposite pattern: past declines were associated with subsequent population increases, and vice versa. Furthermore, in these taxa subsequent growth rates were higher when initial declines were more severe. These patterns agreed with data simulated under a null model for a dynamically stable population experiencing density dependence. However, this type of result could also occur if conservation actions positively affected the population following initial declines - a scenario that our data were too limited to rigorously evaluate. This ambiguity emphasizes the importance of understanding the underlying causes of population trajectories in drawing inferences about rates of decline in abundance.

Keywords: population growth rate, population trend, endangered species, time series, vertebrates

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Keith, David; Akcakaya, H. Resit; Butchart, Stuart H.M.; Collen, Ben; Dulvy, Nicholas K.; Holmes, Elizabeth E.; Hutchings, Jeffrey A.; Keinath, Doug; Schwartz, Michael K.; Shelton, Andrew O.; Waples, Robin S. 2015. Temporal correlations in population trends: Conservation implications from time-series analysis of diverse animal taxa. Biological Conservation. 192: 247-257.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.