Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.0 MB byte)

Title: Assessment of wildland fire impacts on watershed annual water yield: Analytical framework and case studies in the United States

Author: Hallema, Dennis W.; Sun, Ge; Caldwell, Peter V.; Norman, Steve; Cohen Mack, Erika; Liu, Yongqiang; Ward, Eric J.; McNulty, Steve;

Date: 2016

Source: Ecohydrology

Publication Series: Scientific Journal (JRNL)

Description: More than 50% of water supplies in the conterminous United States originate on forestland or rangeland, and are potentially under increasing stress as a result of larger and more severe wildfires. Little is known however about the long-term impacts of fire on annual water yield, and the role of climate variability within this context. We here propose a framework for evaluating wildland fire impacts on streamflow that combines double-mass analysis with new methods (change point analysis, climate elasticity modeling, and process-based modeling) to distinguish between multi-year fire and climate impacts. The framework captures a wide range of fire types, watersheds characteristics and climate conditions using streamflow data, as opposed to other approaches requiring paired watersheds. The process is illustrated with three case studies. A watershed in Arizona experienced a +266% increase in annual water yield in the 5 years after a wildfire, where +219% was attributed to wildfire and +24% to precipitation trends. In contrast, a California watershed had a lower (-64%) post-fire net water yield, comprised of enhanced flow (+38%) attributed to wildfire offset (-102%) by lower precipitation in the post-fire period. Changes in streamflow within a watershed in South Carolina had no apparent link to periods of prescribed burning but matched a very wet winter and reports of storm damage. The presented framework is unique in its ability to detect and quantify fire or other disturbances, even if the date or nature of the disturbance event is uncertain, and regardless of precipitation trends.

Keywords: climate change, climate elasticity, change point analysis, hydrologic disturbance, prescribed burning, United States, wildfire

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Hallema, Dennis W.; Sun, Ge; Caldwell, Peter V.; Norman, Steven P.; Cohen, Erika C.; Liu, Yongqiang; Ward, Eric J.; McNulty, Steven G. 2016. Assessment of wildland fire impacts on watershed annual water yield: Analytical framework and case studies in the United States. Ecohydrology. DOI: 10.1002/eco.1794

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.