Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.0 MB byte)

Title: Strong genetic differentiation in the invasive annual grass Bromus tectorum across the Mojave-Great Basin ecological transition zone

Author: Meyer, Susan E.; Leger, Elizabeth A.; Eldon, Desiree R.; Coleman, Craig E.;

Date: 2016

Source: Biological Invasions. 18: 1611-1628.

Publication Series: Scientific Journal (JRNL)

Description:

Bromus tectorum, an inbreeding annual grass, is a dominant invader in sagebrush steppe habitat in North America. It is also common in warm and salt deserts, displaying a larger environmental tolerance than most native species. We tested the hypothesis that a suite of habitat-specific B. tectorum lineages dominates warm desert habitats. We sampled 30 B. tectorum Mojave Desert and desert fringe populations and genotyped 10–26 individuals per population using 69 single nucleotide polymorphic (SNP) markers. We compared these populations to 11 Great Basin steppe and salt desert populations. Populations from warm desert habitats were dominated by members of two haplogroups (87 % of individuals) that were distinct from haplogroups common in Great Basin habitats.We conducted common garden studies comparing adaptive traits and field performance among haplogroups typically found in different habitats. In contrast to the haplogroup abundant in sagebrush steppe, warm desert haplogroups generally lacked a vernalization requirement for flowering. The most widespread warm desert haplogroup (Warm Desert 1) also had larger seeds and a higher root:shoot ratio than other haplogroups. In the field, performance of warm desert haplogroups was dramatically lower than the sagebrush steppe haplogroup at one steppe site, but one warm desert haplogroup performed as well as the steppe haplogroup under drought conditions at the other site. Our results suggest that B. tectorum succeeds in widely disparate environments through ecotypic variation displayed by distinct lineages of plants. Accounting for this ecotypic variation is essential in modeling its future distribution in response to climate change.

Keywords: cheatgrass, climate change, downy brome, ecological genetics, ecotone, invasive species, pre-adaptation, SNP (single nucleotide polymorphism)

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Meyer, Susan E.; Leger, Elizabeth A.; Eldon, Desiree R.; Coleman, Craig E. 2016. Strong genetic differentiation in the invasive annual grass Bromus tectorum across the Mojave-Great Basin ecological transition zone. Biological Invasions. 18: 1611-1628.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.