Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.0 MB byte)

Title: Stability of peatland carbon to rising temperatures

Author: Wilson, R. M.; Hopple, A. M.; Tfaily, M. M.; Sebestyen, S. D.; Schadt, C. W.; Pfeifer-Meister, L.; Medvedeff, C.; McFarlane, K. J.; Kostka, J. E.; Kolton, M.; Kolka, R.K.; Kluber, L. A.; Keller, J. K.; Guilderson, T. P.; Griffiths, N. A.; Chanton, J. P.; Bridgham, S. D.; Hanson, P. J.;

Date: 2016

Source: Nature Communications. 7: 13723. 10p.

Publication Series: Scientific Journal (JRNL)

Description: Peatlands contain one-third of soil carbon (C), mostly buried in deep, saturated anoxic zones (catotelm). The response of catotelm C to climate forcing is uncertain, because prior experiments have focused on surface warming. We show that deep peat heating of a 2 m-thick peat column results in an exponential increase in CH4 emissions. However, this response is due solely to surface processes and not degradation of catotelm peat. Incubations show that only the top 20–30 cm of peat from experimental plots have higher CH4 production rates at elevated temperatures. Radiocarbon analyses demonstrate that CH4 and CO2 are produced primarily from decomposition of surface-derived modern photosynthate, not catotelm C. There are no differences in microbial abundances, dissolved organic matter concentrations or degradative enzyme activities among treatments. These results suggest that although surface peat will respond to increasing temperature, the large reservoir of catotelm C is stable under current anoxic conditions.

Keywords: Peatlands, SPRUCE, carbon, soil,

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Wilson, R. M.; Hopple, A. M.; Tfaily, M. M.; Sebestyen, S. D.; Schadt, C. W.; Pfeifer-Meister, L.; Medvedeff, C.; McFarlane, K. J.; Kostka, J. E.; Kolton, M.; Kolka, R.K.; Kluber, L. A.; Keller, J. K.; Guilderson, T. P.; Griffiths, N. A.; Chanton, J. P.; Bridgham, S. D.; Hanson, P. J. 2016. Stability of peatland carbon to rising temperatures. Nature Communications. 7: 13723. 10p.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.