Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (7.0 MB bytes)

Title: Assessment and simulation of global terrestrial latent heat flux by synthesis of CMIP5 climate models and surface eddy covariance observations

Author: Yao, Yunjun; Liang, Shunlin; Li, Xianglan; Liu, Shaomin; Chen, Jiquan; Zhang, Xiaotong; Jia, Kun; Jiang, Bo; Xie, Xianhong; Munier, Simon; Liu, Meng; Yu, Jian; Lindroth, Anders; Varlagin, Andrej; Raschi, Antonio; Noormets, Asko; Pio, Casimiro; Wohlfahrt, Georg; Sun, Ge; Domec, Jean-Christophe; Montagnani, Leonardo; Lund, Magnus; Eddy, Moors; Blanken, Peter D.; Grunwald, Thomas; Wolf, Sebastian; Magliulo, Vincenzo;

Date: 2016

Source: Agricultural and Forest Meteorology

Publication Series: Scientific Journal (JRNL)

Description: The latent heat flux (LE) between the terrestrial biosphere and atmosphere is a major driver of the globalhydrological cycle. In this study, we evaluated LE simulations by 45 general circulation models (GCMs)in the Coupled Model Intercomparison Project Phase 5 (CMIP5) by a comparison with eddy covariance (EC) observations from 240 globally distributed sites from 2000 to 2009. In addition, we improved globalterrestrial LE estimates for different land cover types by synthesis of seven best CMIP5 models and EC observations based on a Bayesian model averaging (BMA) method. The comparison results showed sub-stantial differences in monthly LE among all GCMs. The model CESM1-CAM5 has the best performance withthe highest predictive skill and a Taylor skill score (S) from 0.51–0.75 for different land cover types. Thecross-validation results illustrate that the BMA method has improved the accuracy of the CMIP5 GCM’s LE simulation with a decrease in the averaged root-mean-square error (RMSE) by more than 3 W/m2when compared to the simple model averaging (SMA) method and individual GCMs. We found an increas-ing trend in the BMA-based global terrestrial LE (slope of 0.018 W/m2yr−1, p < 0.05) during the period 1970–2005. This variation may be attributed directly to the inter-annual variations in air temperature (Ta), surface incident solar radiation (Rs) and precipitation (P). However, our study highlights a largedifference from previous studies in a continuous increasing trend after 1998, which may be caused by the combined effects of the variations of Rs, Ta, and P on LE for different models on these time scales. This study provides corrected-modeling evidence for an accelerated global water cycle with climate change.

Keywords: Global terrestrial LE CMIP5 GCMs BMA Taylor skill scorea

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Yao, Yunjun; Liang, Shunlin; Li, Xianglan; Liu, Shaomin; Chen, Jiquan; Zhang, Xiaotong; Jia, Kun; Jiang, Bo; Xie, Xianhong; Munier, Simon; Liu, Meng; Yu, Jian; Lindroth, Anders; Varlagin, Andrej; Raschi, Antonio; Noormets, Asko; Pio, Casimiro; Wohlfahrt, Georg; Sun, Ge; Domec, Jean-Christophe; Montagnani, Leonardo; Lund, Magnus; Eddy, Moors; Blanken, Peter D.; Grunwald, Thomas; Wolf, Sebastian; Magliulo, Vincenzo 2016. Assessment and simulation of global terrestrial latent heat flux by synthesis of CMIP5 climate models and surface eddy covariance observations. Agricultural and Forest Meteorology, Vol. 223: 17 pages.: 151-167.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.