Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (479.0 KB bytes)

Title: Role of soil texture, clay mineralogy, location, and temperature in coarse wood decomposition - a mesocosm experiment

Author: Fissore, Cinzia; Jurgensen, Martin F.; Pickens, James; Miller, Chris; Page-Dumroese, Deborah; Giardina, Christian P.;

Date: 2016

Source: Ecosphere. 7(11): Article e01605.

Publication Series: Scientific Journal (JRNL)

Description:

Of all the major pools of terrestrial carbon (C), the dynamics of coarse woody debris (CWD) are the least understood. In contrast to soils and living vegetation, the study of CWD has rarely relied on ex situ methods for elaborating controls on decomposition rates. In this study, we report on a mesocosm incubation experiment examining how clay amount (8%, 16%, and 24% clay), clay type (soil reconstructed with kaolinite vs. montmorillonite), wood placement (on litter layer surface, at the litter layer-soil interface, buried in the mineral soil), and laboratory incubation temperature (10°, 20°, or 30°C) control decomposition rates of highly standardized stakes and blocks of coarse aspen wood. Clay type effect was pronounced, with wood decomposing more quickly in kaolinite- than in montmorillonite-amended soils, perhaps due to a combined effect of moisture and microbial access to the substrate. Clay amount had only very limited effect on wood decomposition, which was a function of contact with the mineral soil (Surface < Interface < Mineral), perhaps due to greater contact with the decomposer community. Temperature effects were significant and dependent on interactions with clay type and wood placement. Effects of temperature on wood decomposition declined as the effects of soil variables increased, suggesting a hierarchy of controls on wood decomposition rates. Both water content and temperature had a strong effect on wood decomposition. Our results highlight that multiple interacting factors likely regulate wood decomposition processes. Multifactorial field experiments are needed to examine the physical, chemical, and biological factors controlling wood decomposition.

Keywords: aspen wood stakes, clay mineral assemblages, kaolinite, mesocosm incubation, montmorillonite, wood decomposition

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Fissore, Cinzia; Jurgensen, Martin F.; Pickens, James; Miller, Chris; Page-Dumroese, Deborah; Giardina, Christian P. 2016. Role of soil texture, clay mineralogy, location, and temperature in coarse wood decomposition - a mesocosm experiment. Ecosphere. 7(11): Article e01605.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.