Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (693.0 KB bytes)

Title: Development of height-volume relationships in second growth Abies grandis for use with aerial LiDAR

Author: Tinkham, Wade T.; Smith, Alistair M. S.; Affleck, David L. R.; Saralecos, Jarred D.; Falkowski, Michael J.; Hoffman, Chad M.; Hudak, Andrew T.; Wulder, Michael A.;

Date: 2016

Source: Canadian Journal of Remote Sensing. 42(5): 400-410.

Publication Series: Scientific Journal (JRNL)

Description: Following typical forest inventory protocols, individual tree volume estimates are generally derived via diameter-at-breast-height (DBH)-based allometry. Although effective, measurement of DBH is time consuming and potentially a costly element in forest inventories. The capacity of airborne light detection and ranging (LiDAR) to provide individual tree-level information poses options for estimating tree-level attributes to enhance the information content of forest inventories. LiDAR provides excellent height measurements and, given the physiologic scaling connection of plant height and volume, using individual tree height-volume relationships could overcome errors associated with the intermediate step of inferring DBH from LiDAR. In this study, 60 Abies grandis (grand fir: 6 cm-64 cm DBH) were destructively sampled to assess stem volume across the Intermountain West in order to develop individual tree height-to-stem volume relationships. Results show DBH (r2 > 0.98) and height (r2 > 0.94) are significantly (p < 0.001) related to stem volume via power relationships. LiDAR-derived heights provided a 12 % RMSE improvement in accuracy of individual tree volume over LiDAR-regressed DBH estimates. Comparing height-based estimates with an existing regional allometry by mapping stem volume in a grand fir-dominated stand yielded a 6.3 % difference in total volume. This study demonstrates LiDAR's potential to estimate individual stem volume at forest management scales, utilizing height-volume relationships.

Keywords: forest inventory, diameter-at-breast-height (DBH), light detection and ranging (LiDAR), grand fir, Abies grandis

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Tinkham, Wade T.; Smith, Alistair M. S.; Affleck, David L. R.; Saralecos, Jarred D.; Falkowski, Michael J.; Hoffman, Chad M.; Hudak, Andrew T.; Wulder, Michael A. 2016. Development of height-volume relationships in second growth Abies grandis for use with aerial LiDAR. Canadian Journal of Remote Sensing. 42(5): 400-410.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.