Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (2.0 MB bytes)

Title: Quantifying early-seral forest composition with remote sensing

Author: Cooley, Rayma A.; Wolter, Peter T.; Sturtevant, Brian R.;

Date: 2016

Source: Photogrammetric Engineering & Remote Sensing. 82(11): 853-863.

Publication Series: Scientific Journal (JRNL)

Description: Spatially explicit modeling of recovering forest structure within two years following wildfire disturbance has not been attempted, yet such knowledge is critical for determining successional pathways. We used remote sensing and field data, along with digital climate and terrain data, to model and map early-seral aspen structure and vegetation species richness following wildfire. Richness was the strongest model (RMSE = 2.47 species, Adj. R2 = 0.60), followed by aspen stem diameter, basal area (BA), height, density, and percent cover (Adj. R2 range = 0.22 to 0.53). Effects of pre-fire aspen BA and fire severity on post-fire aspen structure and richness were analyzed. Post-fire recovery attributes were not significantly related to fire severity, while all but percent cover and richness were sensitive to pre-fire aspen BA (Adj. R2 range = 0.12 to 0.33, p <0.001). This remote mapping capability will enable improved prediction of future forest composition and structure, and associated carbon stocks.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Cooley, Rayma A.; Wolter, Peter T.; Sturtevant, Brian R. 2016. Quantifying early-seral forest composition with remote sensing. Photogrammetric Engineering & Remote Sensing. 82(11): 853-863.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.