Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.0 MB byte)

Title: Statistical treatment for the wet bias in tree-ring chronologies: A case study from the InteriorWest, USA

Author: Sun, Yan; Bekker, Matthew F.; DeRose, R. Justin; Kjelgren, Roger; Wang, S. -Y. Simon.;

Date: 2016

Source: Environmental and Ecological Statistics. doi: 10.1007/s10651-016-0363-x.

Publication Series: Scientific Journal (JRNL)

Description: Dendroclimatic research has long assumed a linear relationship between tree-ring increment and climate variables. However, ring width frequently underestimates extremely wet years, a phenomenon we refer to as ‘wet bias’. In this paper, we present statistical evidence for wet bias that is obscured by the assumption of linearity. To improve tree-ring-climate modeling, we take into account wet bias by introducing two modified linear regression models: a linear spline regression (LSR) and a likelihood-based wet bias adjusted linear regression (WBALR), in comparison with a quadratic regression (QR) model.Using gridded precipitation data and tree-ring indices of multiple species from various sites in Utah, both LSR and WBALR show a significant improvement over the linear regression model and out-perform QR in terms of in-sample R2 and out-of-sample MSE. This further shows that the wet bias emerges from nonlinearity of tree-ring chronologies in reconstructing precipitation. The pattern and extent of wet bias varies by species, by site, and by precipitation regime, making it difficult to generalize the mechanisms behind its cause. However, it is likely that dis-coupling between precipitation amounts (e.g., percent received as rain/snow or percent infiltrating the soil) and its availability to trees (e.g., root zone dynamics), is the primary mechanism driving wet bias.

Keywords: dendrochronology, dendroclimatology, likelihood-based modeling, saturation

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Sun, Yan; Bekker, Matthew F.; DeRose, R. Justin; Kjelgren, Roger; Wang, S. -Y. Simon. 2016. Statistical treatment for the wet bias in tree-ring chronologies: A case study from the InteriorWest, USA. Environmental and Ecological Statistics. doi: 10.1007/s10651-016-0363-x.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.