Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.0 MB byte)

Title: Sedimentation and belowground carbon accumulation rates in mangrove forests that differ in diversity and land use: a tale of two mangroves

Author: MacKenzie, Richard A.; Foulk, Patra B.; Klump, J. Val; Weckerly, Kimberly; Purbospito, Joko; Murdiyarso, Daniel; Donato, Daniel C.; Nam, Vien Ngoc;

Date: 2016

Source: Wetlands Ecology and Management. 24(2): 245-261

Publication Series: Scientific Journal (JRNL)

Description: Increased sea level is the climate change effect expected to have the greatest impact on mangrove forest survival. Mangroves have survived extreme fluctuations in sea level in the past through sedimentation and belowground carbon (C) accumulation, yet it is unclear what factors may influence these two parameters. We measured sedimentation, vertical accretion, and belowground C accumulation rates in mangrove forests from the Republic of Palau and Vietnam to examine how diversity (high-Vietnam vs. low-Palau), land use, and location (fringe vs. interior) might influence these parameters. Land use in this study was identified as disturbance and restoration for all mangrove forests sampled in Palau and Vietnam, respectively. Vertical accretion rates were significantly greater in Vietnam (2.44 ± 1.38 cm/year) than Palau mangrove forests (0.47 ± 0.08 cm/year; p < 0.001, F1,17 = 24.96). Vertical accretion rates were positively correlated to diversity (R = 0.43, p < 0.05). However, stronger correlations of accretion to bulk density (R = 0.64, p < 0.01) and significantly higher bulk densities in Vietnamese (0.67 ± 0.04 g/cm3) than Palau mangroves (0.30 ± 0.03 g/cm3; p < 0.001, F1,17 = 54.4) suggests that suspended sediments played a greater role in mangrove forest floor maintenance relative to sea level rise. Average vertical accretion rates were similar between naturally colonized (1.01 ± 0.10 cm/year) and outplanted sites (1.06 ± 0.05 cm/year) and between fringe (1.06 ± 0.12 cm/year) and interior mangrove (0.99 ± 0.09 cm/year) in Vietnam. In Palau, vertical accretion rates did not differ between disturbed (0.42 ± 0.11 cm/year) and undisturbed (0.51 ± 0.13 cm/year) mangrove forests and were higher in fringe (0.61 ± 0.15 cm/year) than interior sites (0.33 ± 0.09 cm/year; p = 0.1, F1,7 = 3.45). Belowground C accumulation rates did not differ between any factors examined. C accumulation rates (69–602 gC/m2/year) were similar to those reported elsewhere in the literature and suggest that intact coastal ecosystems play an important role in the global C cycle, sequestering C at rates that are 10–20× greater than upland forests. Assuming vertical accretion rates measured using 210Pb are an effective proxy for surface elevation, the Vietnamese and Palauan mangroves appear to be keeping up with current rates of sea level rise.

Keywords: Mangroves, Sea level rise, Sedimentation rates, Vertical accretion, Belowground carbon accumulation, 210Pb, Climate change

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


MacKenzie, Richard A.; Foulk, Patra B.; Klump, J. Val; Weckerly, Kimberly; Purbospito, Joko; Murdiyarso, Daniel; Donato, Daniel C.; Nam, Vien Ngoc 2016. Sedimentation and belowground carbon accumulation rates in mangrove forests that differ in diversity and land use: a tale of two mangroves. Wetlands Ecology and Management. 24(2): 245-261.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.