Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.0 MB byte)

Title: Surface storm flow prediction on hillslopes based on topography and hydrologic connectivity

Author: Hallema, Dennis W.; Moussa, Roger; Sun, Ge; McNulty, Steven G.;

Date: 2016

Source: Ecological Processes

Publication Series: Scientific Journal (JRNL)

Description:

Background: Hillslopes provide critical watershed ecosystem services such as soil erosion control and storm flow regulation through collecting, storing, and releasing rain water. During intense rainstorms, rainfall intensity and infiltration capacity on the hillslope control Hortonian runoff while the topographic attributes of the hillslope (e.g., slope, aspect, curvature) and the channel network define the structural hydraulic connectivity that determines how rapidly excess water is transferred. This paper discusses literature on the link between topographic attributes and hydrologic connectivity and demonstrates how this link can be used to define a parsimonious model for predicting surface runoff during high intensity rainfall.
Main text: First, we provide a topographic characterization of the hillslope necessary to determine the structural hydrologic connectivity of surface flow based on existing literature. Subsequently, we demonstrate a hydrologic surface response model that routes the geomorphologic unit hydrograph (GIUH) through a spatial domain of representative elementary hillslopes reflecting the structural hydrologic connectivity. Topographic attributes impact flow and travel time distributions by affecting gravitational acceleration of overland flow and channel, solar irradiance, flow deceleration by vegetation, and flow divergence/convergence.
Conclusions: We show with an example where we apply the GIUH-based model to hypothetical hillslopes that the spatial organization of the channel network is critical in the flow and travel time distribution, and that topographic attributes are key in obtaining simple yet accurate representations of hydrologic connectivity. Parsimonious GIUH models of surface runoff that use this hydrologic connectivity have the advantage of low data requirements, being scalable and applicable regardless of the spatial complexity of the hillslope, and have the potential to fundamentally improve flood forecasting tools used in the assessment of ecosystem services.

Keywords: Hydrological processes, Hydrologic connectivity, Storm flow, Ecosystem services, GIUH

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Hallema, Dennis W.; Moussa, Roger; Sun, Ge; McNulty, Steven G. 2016. Surface storm flow prediction on hillslopes based on topography and hydrologic connectivity. Ecological Processes,5:13. DOI 10.1186/s13717-016-0057-1

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.