Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (6.0 MB bytes)

Title: Hybrid system of unbonded post-tensioned CLT panels and light-frame wood shear walls

Author: Ho, T.; Dao, T.; Aaleti, S.; van de Lindt, J.; Rammer, Douglas;

Date: 2016

Source: Journal of Structural Engineering, © ASCE, ISSN 0733-9445

Publication Series: Scientific Journal (JRNL)

Description: Cross-laminated timber (CLT) is a relatively new type of massive timber system that has shown to possess excellent mechanical properties and structural behavior in building construction. When post-tensioned with high-strength tendons, CLT panels perform well under cyclic loadings because of two key characteristics: their rocking behavior and self-centering capacity. Although post-tensioned rocking CLT panels can carry heavy gravity loads, resist lateral loads, and self-center after a seismic event, they are heavy and form a pinched hysteresis, thereby limiting energy dissipation. Conversely, conventional light-frame wood shear walls (LiFS) provide a large amount of energy dissipation from fastener slip, and, as their name implies, are lightweight, thereby reducing inertial forces during earthquakes. The combination of these different lateral behaviors can help improve the performance of buildings during strong ground shaking, but issues of deformation compatibility exist. This study presents the results of a numerical study to examine the behavior of post-tensioned CLT walls under cyclic loadings. A well-known 10-parameter model was applied to simulate the performance of a CLT-LiFS hybrid system. The post-tensioned CLT wall model was designed on the basis of a modified monolithic beam analogy that was originally developed for precast concrete-jointed ductile connections. Several tests on post-tensioned CLT panels and hybrid walls were implemented at the Large Scale Structural Lab at the University of Alabama to validate the numerical model, and the results showed very good agreement with the numerical model. Finally, incremental dynamic analysis on system level models were compared with conventional light-frame wood system models.

Keywords: Cross-laminated timber (CLT), Post-tensioned, Light frame wood shear wall, Hybrid system, Cyclic loads, Incremental dynamic analysis (IDA), Wood structures

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Ho, Tu Xuan; Dao, Thang Nguyen; Aaleti, Sriram; van de Lindt, John W.; Rammer, Douglas R. 2016. Hybrid system of unbonded post-tensioned CLT panels and light-frame wood shear walls. Journal of Structural Engineering. 04016171: 12 pp.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.