Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (605.0 KB bytes)

Title: Fungal functioning in a pine forest: evidence from a 15N-labeled global change experiment

Author: Hobbie, Erik A.; van Diepen, Linda T.A.; Lilleskov, Erik A.; Oiumette, Andrew P.; Finzi, Adrien C.; Hofmockel, Kirsten S.;

Date: 2014

Source: New Phytologist. 201(4): 1431-1439.

Publication Series: Scientific Journal (JRNL)

Description: We used natural and tracer nitrogen (N) isotopes in a Pinus taeda free air CO2 enrichment (FACE) experiment to investigate functioning of ectomycorrhizal and saprotrophic fungi in N cycling. Fungal sporocarps were sampled in 2004 (natural abundance and 15N tracer) and 2010 (tracer) and δ15N patterns were compared against litter and soil pools. Ectomycorrhizal fungi with hydrophobic ectomycorrhizas (e.g. Cortinarius and Tricholoma) acquired N from the Oea horizon or deeper. Taxa with hydrophilic ectomycorrhizas acquired N from the Oi horizon (Russula and Lactarius) or deeper (Laccaria, Inocybe, and Amanita). 15N enrichment patterns for Cortinarius and Amanita in 2010 did not correspond to any measured bulk pool, suggesting that a persistent pool of active organic N supplied these two taxa. Saprotrophic fungi could be separated into those colonizing pine cones (Baeospora), wood, litter (Oi), and soil (Ramariopsis), with δ15N of taxa reflecting substrate differences. 15N enrichment between sources and sporocarps varied across taxa and contributed to δ15N patterns.  Natural abundance and 15N tracers proved useful for tracking N from different depths into fungal taxa, generally corresponded to literature estimates of fungal activity within soil profiles, and provided new insights into interpreting natural abundance δ15N patterns.

Keywords: 15N, carbon dioxide, decomposition, ectomycorrhizal fungi, free air CO2 enrichment (FACE) experiment, nitrogen (N) isotope, organic nitrogen, plant–microbial feedbacks

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Hobbie, Erik A.; van Diepen, Linda T.A.; Lilleskov, Erik A.; Oiumette, Andrew P.; Finzi, Adrien C.; Hofmockel, Kirsten S. 2014. Fungal functioning in a pine forest: evidence from a 15N-labeled global change experiment. New Phytologist. 201(4): 1431-1439.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.