Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.0 MB byte)

Title: Orthogonal model and experimental data for analyzing wood-fiber-based tri-axial ribbed structural panels in bending

Author: Li, Jinghao; Hunt, John F.; Gong, Shaoqin; Cai, Zhiyong;

Date: 2017

Source: European Journal of Wood and Wood Products

Publication Series: Scientific Journal (JRNL)

Description: This paper presents an analysis of 3-dimensional engineered structural panels (3DESP) made from wood-fiber-based laminated paper composites. Since the existing models for calculating the mechanical behavior of core configurations within sandwich panels are very complex, a new simplified orthogonal model (SOM) using an equivalent element has been developed. This model considers both linear and nonlinear geometrical effects when used to analyze the mechanical properties of 3DESP by transforming repeated elements from a tri-axial ribbed core for bending. Two different conditions were studied in comparison with finite element method (FEM) and I-beam equation. The results showed the SOM was consistent with FEM and the experimental result and were more accurate than the I-beam equation. The SOM considering nonlinear geometric deformation needed more computational effort and was found to match well with a FEM model and had slightly better accuracy compared with the linear SOM. Compared with FEM, the parameters in the linear SOM were easier to modify for predicting point-by-point bending performance. However, while the FEM can provide advanced characteristics of the 3DESP such as strain distribution, the linear SOM provided acceptable deformation and is proposed for preliminary design with multiple parameters. FEM should be applied for advanced analyses.

Keywords: Equivalent element, orthotropic, tri-axial ribbed core, laminated plate theory, FEA, 1- beam equation, preliminary design, simulation

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Li, Jinghao; Hunt, John F.; Gong, Shaoqin; Cai, Zhiyong. 2017. Orthogonal model and experimental data for analyzing wood-fiber-based tri-axial ribbed structural panels in bending. European Journal of Wood and Wood Products. 75(1): 5-15.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.