Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (867.0 KB bytes)

Title: Layer stacking: A novel algorithm for individual forest tree segmentation from LiDAR point clouds

Author: Ayrey, Elias; Fraver, Shawn; Kershaw, John A.; Kenefic, Laura S.; Hayes, Daniel; Weiskittel, Aaron R.; Roth, Brian E.;

Date: 2017

Source: Canadian Journal of Remote Sensing. 43(1): 16-27.

Publication Series: Scientific Journal (JRNL)

Description: As light detection and ranging (LiDAR) technology advances, it has become common for datasets to be acquired at a point density high enough to capture structural information from individual trees. To process these data, an automatic method of isolating individual trees from a LiDAR point cloud is required. Traditional methods for segmenting trees attempt to isolate prominent tree crowns from a canopy height model. We here introduce a novel segmentation method, layer stacking, which slices the entire forest point cloud at 1-m height intervals and isolates trees in each layer. Merging the results from all layers produces representative tree profiles. When compared to watershed delineation (a widely used segmentation algorithm), layer stacking correctly identified 15% more trees in unevenaged conifer stands, 7%–17% more in even-aged conifer stands, 26% more in mixedwood stands, and 26%–30% more (with 75% of trees correctly detected) in pure deciduous stands. Overall, layer stacking's commission error was mostly similar to or better than that of watershed delineation. Layer stacking performed particularly well in deciduous, leaf-off conditions, even those where tree crowns were less prominent. We conclude that in the tested forest types, layer stacking represents an improvement in segmentation when compared to existing algorithms.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Ayrey, Elias; Fraver, Shawn; Kershaw, John A.; Kenefic, Laura S.; Hayes, Daniel; Weiskittel, Aaron R.; Roth, Brian E. 2017. Layer stacking: A novel algorithm for individual forest tree segmentation from LiDAR point clouds. Canadian Journal of Remote Sensing. 43(1): 16-27.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.