Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.0 MB byte)

Title: An improved canopy wind model for predicting wind adjustment factors and wildland fire behavior

Author: Massman, W. J.; Forthofer, J. M.; Finney, M. A.;

Date: 2017

Source: Canadian Journal of Forest Research. 47: 594-603.

Publication Series: Scientific Journal (JRNL)

Description: The ability to rapidly estimate wind speed beneath a forest canopy or near the ground surface in any vegetation is critical to practical wildland fire behavior models. The common metric of this wind speed is the "mid-flame" wind speed, UMF. However, the existing approach for estimating UMF has some significant shortcomings. These include the assumptions that both the within-canopy wind speed and the canopy structure are uniform with depth (z) throughout the canopy and that the canopy roughness length (z0) and displacement height (d) are the same regardless of canopy structure and foliage density. The purpose of this study is to develop and assess a model of canopy wind and Reynolds stress that eliminates these shortcomings and thereby provide a more physically realistic method for calculating UMF. The present model can be used for canopies of arbitrary plant surface distribution and leaf area, and the single function that describes the within-canopy wind speed is shown to reproduce observed canopy wind speed profiles across a wide variety of canopies. An equally simple analytical expression for the within canopy Reynolds stress, u2(z), also provides a reasonable description of the observed vertical profiles of Reynolds stress. In turn, u2(z) is used to calculate z0 and d. Tests of operational performance are also discussed.

Keywords: fire spread modeling, canopy foliage distribution, Rothermel model

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.



Massman, W. J.; Forthofer, J. M.; Finney, M. A. 2017. An improved canopy wind model for predicting wind adjustment factors and wildland fire behavior. Canadian Journal of Forest Research. 47: 594-603.


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.