Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (611.0 KB bytes)

Title: Repeated burning alters the structure and composition of hardwood regeneration in oak-dominated forests of eastern Kentucky, USA

Author: Keyser, Tara L.; Arthur, Mary; Loftis, David L.;

Date: 2017

Source: Forest Ecology and Management

Publication Series: Scientific Journal (JRNL)

Description: The exclusion of anthropogenic fire is a primary factor responsible for the ‘mesophication’ of eastern oak (Quercus) forests and resultant oak regeneration problems. Consequently, the reintroduction of fire is increasingly used to promote the establishment and growth of oak and hickory (Carya) and control competition from shade-tolerant species (e.g., red maple (Acer rubrum)) in the forest understory. In this study, we examined the effects of fire frequency on the abundance of prominent species in the woody regeneration layer in oak-dominated forests of eastern Kentucky. Treatments included: (1) fire-excluded (FE); (2) frequent fire (FF) – five burns over nine years, and (3) less-frequent fire (LFF) – two burns over seven years. Prior to burning (2002) and again five and seven growing seasons following the cessation of burning in the FF and LFF treatments (2015), respectively, we inventoried tree species in the woody regeneration layer into three size classes: (1) small seedlings (stems < 0.6 m), (2) large seedlings (0.6 m and <1.2 m) and (3) small saplings (1.2 m and <3.8 cm diameter at breast height). Pre- and postburn, the regeneration layer was dominated by non-Oak-Hickory species, and although Oak-Hickory regeneration was abundant the majority of stems were <0.6 m. For Oak-Hickory, significant treatment effects were limited to the large seedling and small sapling size classes. For large Oak-Hickory seedlings, density was significantly greater in the LFF than FE treatment. For small Oak-Hickory saplings, density in the LFF treatment was 17 and 4 times greater than in the FE and FF treatments, respectively. This study provides support for the notion that fire-free periods may be more of a factor controlling the abundance and composition of the woody regeneration layer than simply the number of burns. However, despite greater stem density, the fate of the Oak-Hickory regeneration layer that developed in response to the LFF treatment is uncertain, as the density of non-oak competitors remains high. Additional treatments (e.g., targeted herbicide application, additional burning) may be necessary to reduce the abundance of non-oak species and increase the likelihood of continued recruitment Oak-Hickory should natural or silvicultural release events occur.

Keywords: Quercus, Fire, Mesophication, Disturbance

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Keyser, Tara L.; Arthur, Mary; Loftis, David L. 2017.Repeated burning alters the structure and composition of hardwood regeneration in oak-dominated forests of eastern Kentucky, USA. Forest Ecology and Management. 393: 1-11. https://doi.org/10.1016/j.foreco.2017.03.015.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.