Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (4.0 MB bytes)

Title: Landscape geomorphic characteristic impacts on greenhouse gas fluxes in exposed stream and riparian sediments

Author: Vidon, Philippe; Serchan, Satish;

Date: 2016

Source: Environmental Science: Processes & Impacts. 18(7): 844-853

Publication Series: Scientific Journal (JRNL)

Description: While excessive releases of greenhouse gases (GHG: N2O, CO2, CH4) to the atmosphere due to the burning of fossil fuel remains a concern, we also need to better quantify GHG emissions from natural systems. This study investigates GHG fluxes at the soil–atmosphere interface in a series of 7 stream reaches (riparian zones + exposed streambed sediment) across a range of geomorphic locations from headwaters reaches to lowland wetland reaches. When riparian fluxes (RZ) are compared to fluxes from in-stream locations (IS) under summer baseflow conditions, total CO2-equivalent (CO2eq) emissions are approximately 5 times higher at RZ locations than at IS locations, with most CO2eq driven by CH4 production at RZ locations where wet conditions dominate (headwater wetlands, lowland wetlands). On a gas-by-gas basis, no clear differences in N2O fluxes between RZ and IS locations were observed regardless of locations (headwater vs. lowland reaches), while CO2 fluxes were significantly larger at RZ locations than IS locations. Methane fluxes were significantly higher in wetland-influenced reaches than other reaches for both RZ and IS locations. However, GHG fluxes were not consistently correlated to DOC, DO, NO3-, NH4+, or water temperature, stressing the limitations of using water quality parameters to predict GHG emissions at the floodplain scale, at least during summer baseflow conditions. As strategies are developed to further constrain GHG emission for whole watersheds, we propose that approaches linking landscape geomorphic characteristics to GHG fluxes at the soil–atmosphere interface offer a promising avenue to successfully predict GHG emissions in floodplains at the watershed scale.

Keywords: greenhouse gases, stream sediments, riparian serdiments

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Vidon, Philippe; Serchan, Satish 2016. Landscape geomorphic characteristic impacts on greenhouse gas fluxes in exposed stream and riparian sediments. Environmental Science: Processes & Impacts. 18(7): 844-853. https://doi.org/10.1039/c6em00162a.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.