Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (3.0 MB bytes)

Title: Sex-biased dispersal and spatial heterogeneity affect landscape resistance to gene flow in fisher

Author: Tucker, Jody M.; Allendorf, Fred W.; Truex, Richard L.; Schwartz, Michael K.;

Date: 2017

Source: Ecosphere. 8(6): e01839.

Publication Series: Scientific Journal (JRNL)

Description: Genetic connectivity results from the dispersal and reproduction of individuals across landscapes. Mammalian populations frequently exhibit sex-biased dispersal, but this factor has rarely been addressed in individual-based landscape genetics research. In this study, we evaluate the effects of sexbiased dispersal and landscape heterogeneity on genetic connectivity in a small and isolated population of fisher (Pekania pennanti). We genotyped 247 fisher samples collected across the southern Sierra Nevada Mountains of California. We tested for genetic evidence of sex-biased dispersal using sex-specific population structure and spatial autocorrelation analyses, and sex-biased dispersal tests of the assignment index, FST, and FIS.We developed resistance surfaces for eight landscape features hypothesized to affect gene flow and optimized each resistance surface independently by sex. Using multiple regression of distance matrices and an information-theoretic model selection approach, we fit models of genetic distance to landscape resistance distance separately by sex and geographic region. We found genetic evidence of sex-biased dispersal with significant differences in FST, FIS, and spatial autocorrelation between sexes. Optimal resistance values differed by sex, and model variables, fit, and parameter estimates varied substantially both between sexes and between geographic regions. We found a stronger relationship between landscape features and genetic distance for females, the philopatric sex, than the more widely dispersing males. Our results show that landscape features influencing gene flow differed by both sex and regional heterogeneity. Conducting analyses by sex and by region allowed for the identification of landscape genetics relationships not discernible when analyzed together. Our results show that failing to account for these factors can confound results and obscure relationships between landscape features and gene flow.

Keywords: connectivity, fisher, gene flow, landscape genetics, landscape resistance, Pekania pennanti, sex-biased dispersal, Sierra Nevada, spatial autocorrelation, spatial heterogeneity

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.



Tucker, Jody M.; Allendorf, Fred W.; Truex, Richard L.; Schwartz, Michael K. 2017. Sex-biased dispersal and spatial heterogeneity affect landscape resistance to gene flow in fisher. Ecosphere. 8(6): e01839.


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.