Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (226 KB bytes)

Title: Enhancing the soil organic matter pool through biomass incorporation

Author: Sanchez, Felipe G.; Carter, Emily A.; Klepac, John F.;

Date: 2003

Source: Biomass and Bioenergy 24 (2003) 337-349

Publication Series: Miscellaneous Publication

Description: A study was installed in the Upper Coastal Plain of South Carolina, USA that sought to examine the impact of incorporating downed slash materials into subsoil layers on soil chemical and physical properties as compared with the effect of slash materials left on the soil surface. Baseline levels of slash were estimated by establishing transects within harvested stands and estimating the quantity of down wood and stumps. An equivalent quantity of biomass and two times the baseline levels were incorporated into subsurface soil layers by a CMI RS 500B reclaimer/stabilizer. Two sites were examined which differed in soil textural composition: sandy vs. clay. Site differences had no impact on machine productivity and machine costs were estimated at $US 521 ha-1 and $US 633 ha-1 on the 'sandy' and 'clay' sites, respectively. The feasibility of the CM1 for biomass incorporation is low due to high unit area costs but increased machine productivity would reduce costs and improve its potential. Biomass incorporation improved carbon and nutrient content of each site, especially on the sandy site. Slash levels had an impact on nutrient content but the differences were not statistically significant. For the sandy site, improvements in soil physical properties were evident in response to incorporation and machine planting operations. Bulk density and soil strength were reduced in response to biomass incorporation and tillage to levels that would not limit root production. The differences in soil physical response between incorporated treatments were minimal and not statistically significant.

Keywords: Biomass, Carbon, Nitrogen, Bulk density, Cone index, Machine costs, Machine production

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)



Sanchez, Felipe G.; Carter, Emily A.; Klepac, John F. 2003. Enhancing the soil organic matter pool through biomass incorporation. Biomass and Bioenergy 24 (2003) 337-349


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.