Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (246 KB bytes)

Title: Ethanol and thermotolerance in the bioconversion of xylose by yeasts

Author: Jeffries, Thomas W.; Jin, Yong-Su.;

Date: 2000

Source: Advances in applied microbiology. Vol. 47 (2000).:p. 221-268 : ill.

Publication Series: Miscellaneous Publication

Description: The mechanisms underlying ethanol and heat tolerance are complex. Many different genes are involved, and the exact basis is not fully understood. The integrity of cytoplasmic and mitochondrial membranes is critical to maintain proton gradients for metabolic energy and nutrient uptake. Heat and ethanol stress adversely affect membrane integrity. These factors are particularly detrimental to xylose-fermenting yeasts because they require oxygen for biosynthesis of essential cell membrane and nucleic acid constituents, and they depend on respiration for the generation of ATP. Physiological responses to ethanol and heat shock have been studied most extensively in S. cerevisiae. However, comparative biochemical studies with other organisms suggest that similar mechanisms will be important in xylose-fermenting yeasts. The composition of a cellas membrane lipids shifts with temperature, ethanol concentration, and stage of cultivation. Levels of unsaturated fatty acids and ergosterol increase in response to temperature and ethanol stress. Inositol is involved in phospholipid biosynthesis, and it can increase ethanol tolerance when provided as a supplement. Membrane integrity determines the cellas ability to maintain proton gradients for nutrient uptake. Plasma membrane ATPase generates the proton gradient, and the biochemical characteristics of this enzyme contribute to ethanol tolerance. Organisms with higher ethanol tolerance have ATPase activities with low pH optima and high affinity for ATP. Likewise, organisms with ATPase activities that resist ethanol inhibition also function better at high ethanol concentrations. ATPase consumes a significant fraction of the total cellular ATP, and under stress conditions when membrane gradients are compromised the activity of ATPase is regulated. In xylose-fermenting yeasts, the carbon source used for growth affects both ATPase activity and ethanol tolerance. Cells can adapt to heat and ethanol stress by synthesizing trehalose and heat-shock proteins, which stabilize and repair denatured proteins. The capacity of cells to produce trehalose and induce HSPs correlate with their thermotolerance. Both heat and ethanol increase the frequency of petite mutations and kill cells. This might be attributable to membrane effects, but it could also arise from oxidative damage. Cytoplasmic and mitochondrial superoxide dismutases can destroy oxidative radicals and thereby maintain cell viability. Improved knowledge of the mechanisms underlying ethanol and thermotolerance in S. cerevisiae should enable the genetic engineering of these traits in xylose- fermenting yeasts.

Keywords: Xylose, Yeasts, Ethanol, Lignocellulose, Fermentation, Saccharification, Bioconversion, Bioprocessing, Thermotolerance

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.



Jeffries, Thomas W.; Jin, Yong-Su. 2000. Ethanol and thermotolerance in the bioconversion of xylose by yeasts. Advances in applied microbiology. Vol. 47 (2000).:p. 221-268 : ill.


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.