Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (161 KB bytes)

Title: Effects of desiccation on the physiology and biochemistry of Quercus alba acorns

Author: Connor, Kristina F.; Sowa, Sharon;

Date: 2003

Source: Tree Physiology, 23, 1147-1152. 2003.

Publication Series: Miscellaneous Publication

Description: Seeds that lose viability when dried to a water content of less than 12% are said to be recalcitrant. We subjected acorns of Quercus alba L., a species with recalcitrant seeds, to desiccation to determine the effects of drying on lipids, proteins and carbohydrates of the embryonic axis and cotyledon tissues. Samples of fresh seed and seed dried for selected intervals were analyzed for water content and germination, and for lipids, proteins and carbohydrates by Fourier transform-infrared (FI-IR) spectroscopy. Carbohydrates were further analyzed by gas chromatography (GC).

The FT-IR analysis revealed that membrane lipid structure initially exhibited reversible shifts between gel and liquid crystalline phases in response to drying and rehydration; however, reversibility declined as viability was lost. Changes in carbohydrate concentration were observed based on peak height comparisons; sucrose concentration in the embryonic axis increased dramatically after 5 days of drying. The most sensitive indicator of desiccation damage was the irreversible change in protein secondary structure in embryonic axes and cotyledon tissue. These changes were illustrated by shifts in amide absorbance near 1650 cm-1. Gas chromatography indicated an abundance of sucrose in both the embryonic axes and the cotyledon tissue. Although sucrose concentrations in these tissues were initially similar, sucrose concentration in the embryonic axes became significantly greater than in the cotyledons as the acorns dried. We hypothesize that, in drying acorns, increased concentration of sucrose does not prevent loss of vi- ability, but acts as a glycoprotectant against cell collapse and cell wall membrane damage as water stress increases.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)



Connor, Kristina F.; Sowa, Sharon 2003. Effects of desiccation on the physiology and biochemistry of Quercus alba acorns. Tree Physiology, 23, 1147-1152. 2003.


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.