Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (2.2 MB)

Title: Progress in analysis of computed tomography (CT) images of hardwood logs for defect detection

Author: Sarigul, Erol; Abbott, A. Lynn; Schmoldt, Daniel L.;

Date: 2003

Source: Proceedings, ScanTech 2003, The Tenth International Conference on Scanning Technology and Process Optimization in the Wood Industry. 19-30.

Publication Series: Miscellaneous Publication

Description: This paper addresses the problem of automatically detecting internal defects in logs using computed tomography (CT) images. The overall purpose is to assist in breakdown optimization. Several studies have shown that the commercial value of resulting boards can be increased substantially if defect locations are known in advance, and if this information is used to make sawing decisions. The problem is difficult, particularly for hardwood species, because of the natural variations of wood density and because of the irregular placement of defects such as knots. In our previous work, we developed a processing approach that utilizes artificial neural networks (ANN) to classify CT log images on a pixel-by-pixel basis. The system uses small (e.g., 5-by-5) neighborhoods in an image make a preliminary classification decision, using labels such as “knot,” “split,” and “bark.” This approach has yielded high accuracy statistically, with classification rates often exceeding 95%. Subjectively, however, the results can often be improved somewhat through further processing steps. For example, relatively simple operations can be employed to remove small. spurious regions that are not statistically significant, although their removal significantly improves the appearance of the results. This paper presents recent results for two hardwood species (red oak and sugar maple), as well as preliminary results for a softwood species (black spruce).

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Sarigul, Erol; Abbott, A. Lynn; Schmoldt, Daniel L. 2003. Progress in analysis of computed tomography (CT) images of hardwood logs for defect detection. Proceedings, ScanTech 2003, The Tenth International Conference on Scanning Technology and Process Optimization in the Wood Industry. 19-30.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.