Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (273 KB bytes)

Title: Effects of high- and low-intensity fires on soil properties and plant growth in a Bolivian dry forest

Author: Kennard, Deborah K.; Gholz, H.L.;

Date: 2001

Source: Plant and Soil 234: 119-129, 2001

Publication Series: Miscellaneous Publication

Description: We compared soil nutrient availabiiity and soil physical properties among four treatments (high-intensity fire, low- intensity fire, plant removal, and harvesting gap) and a control (intact forest understory) over a period of 18 months in a tropical dry forest in Bolivia. The effect of treatments on plant growth was tested using a shade intolerant tree species (Anaderzanthera colubrina Vell. Cone.) as a bioassay. Surface soils in high-intensity fire treatments had significantly greater pH values, concentrations of extractable calcium (Ca), potassium (K), magnesium (Mg), and phosphorus (P), and amounts of resin-available P and nitrogen (N) than other treatments; however, a loss of soil organic matter during high-intensity fires likely resulted in increased bulk density and strength, and decreased water infiltration rates. Low intensity fires also significantly increased soil pH, concentrations of extractable Ca, K, Mg, and P, and amounts of resin-available P and N, although to a lesser degree than high-intensity fires. Low-intensity fires did not lower soil organic matter contents or alter soil physical properties. Plant removal and harvesting gap treatments had little effect on soil chemical and physical properties. Despite the potentially negative effects of degraded soil structure on plant growth, growth of A. colubrina seedlings were greater following high-intensity fires. Evidently, the increase in nutrient availability caused by high-intensity fires was not offset by degraded soil structure in its effects on seedling growth. Long-term effects of high intensity fires require further research.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)



Kennard, Deborah K.; Gholz, H.L. 2001. Effects of high- and low-intensity fires on soil properties and plant growth in a Bolivian dry forest. Plant and Soil 234: 119-129, 2001


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.