Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (358 KB bytes)

Title: Messenger RNA transcripts

Author: Cullen, Dan;

Date: 2004

Source: Biodiversity of fungi : inventory and monitoring methods. Amsterdam : Elsevier Academic Press, 2004: Pages 85-88

Publication Series: Miscellaneous Publication

Description: In contrast to DNA, messenger RNA (mRNA) in complex substrata is rarely analyzed, in large part because labile RNA molecules are difficult to purify. Nucleic acid extractions from fungi that colonize soil are particularly difficult and plagued by humic substances that interfere with Taq polymerase (Tebbe and Vahjen 1993 and references therein). Magnetic capture techniques have overcome these problems, allowing rapid and efficient purification of microbial DNA and RNA. Magnetic capture involves the use of magnetic beads that are covalently attached to single-stranded DNA, most commonly oligo (dT) chains. The beads are mixed with crude lysates, and hybrid molecules are removed by application of a magnetic field. In the case of beaded oligo (dT) chains, polyadenylated [Poly (A)] RNA, which is a suitable template for reverse-transcription-coupled PCR (RT-PCR), is obtained. When combined with competitive PCR techniques (Gilliland et al. 1990), quantitative assessment of transcript levels is possible. Quantitative transcript analysis is as sensitive and specific as conventional PCR amplification of DNA for identifying fungi. The competitive RT-PCR technique is particularly well suited for differentiating genes within complex gene families such as those encoding the peroxidases, laccases, and cellobiohydrolases of white-rot fungi. In addition, the technique provides a measure of fungal biomass and a glimpse of physiological activities of fungi in situ. The most thoroughly studied gene family includes 10 or more structurally related genes that encode isozymes of lignin peroxidases in Phanerochaete chrysosporium (reviewed in Gaskell et al. 1994; Cullen 1997). When the RT-PCR technique was applied to P. chrysosporium soil cultures, unusual patterns of peroxidase gene transcription were demonstrated (Lamar et al. 1995). For example, certain lignin peroxidase transcripts, abundant in defined media (Stewart and Cullen 1999), were not expressed in soil during organopollutant degradation. The absence of those peroxidase transcripts argues strongly against a significant role for those genes in the degradation of pentachlorphenol (PCP) and polycyclic aromatic hydrocarbons (Bogan et al. 1996a, 1996b).

Keywords: Messenger RNA, transcripts, Phanerochaete chrysosporium, decay fungi

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Cullen, Dan 2004. Messenger RNA transcripts. Biodiversity of fungi : inventory and monitoring methods. Amsterdam : Elsevier Academic Press, 2004: Pages 85-88

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.