Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (2.77 MB bytes)

Title: A comparison of forest canopy models derived from LIDAR and INSAR data in a Pacific Northwest conifer forest.

Author: Andersen, Hans-Erik; McGaughey, Robert J.; Carson, Ward W.; Reutebuch, Stephen E.; Mercer, Bryan; Allan, Jeremy.;

Date: 2004

Source: International Archives of Photogrammetry and Remote Sensing. 34(Part 3/W13): 211-217.

Publication Series: Scientific Journal (JRNL)

Description: Active remote sensing technologies, including interferometric radar (InSAR) and airborne laser scanning (LIDAR) have the potential to provide accurate information relating to three-dimensional forest canopy structure over extensive areas of the landscape. In order to assess the capabilities of these alternative systems for characterizing the forest canopy dimensions, canopy- and terrain-level elevation models derived from multi-frequency InSAR and high-density LIDAR data were compared to photogrammetric forest canopy measurements acquired within a Douglas-fir forest near Olympia, WA. Canopy and terrain surface elevations were measured on large-scale photographs along two representative profiles within this forest area, and these elevations were compared to corresponding elevations extracted from canopy models generated from X-band InSAR and high-density LIDAR data. In addition, the elevations derived from InSAR and LIDAR canopy models were compared to photogrammetric canopy elevations acquired at distinct spot elevations throughout the study area. Results generally indicate that both technologies can provide valuable measurements of gross canopy dimensions. In general, LIDAR elevation models acquired from high-density data more accurately represent the complex morphology of the canopy surface, while InSAR models provide a generalized, less detailed characterization of canopy structure. The biases observed in the InSAR and LIDAR canopy surface models relative to the photogrammetric measurements are likely due to the different physical processes and geometric principles underlying elevation measurement with these active sensing systems.

Keywords: Forestry, LIDAR, SAR, photogrammetry, interferometer, comparison, DEM/DTM

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Andersen, Hans-Erik; McGaughey, Robert J.; Carson, Ward W.; Reutebuch, Stephen E.; Mercer, Bryan; Allan, Jeremy. 2004. A comparison of forest canopy models derived from LIDAR and INSAR data in a Pacific Northwest conifer forest. International Archives of Photogrammetry and Remote Sensing. 34(Part 3/W13): 211-217.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.