Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (286 KB bytes)

Title: Molecular characterization of a gene for aldose reductase (CbXYL1) from Candida boidinii and its expression in Saccharomyces cerevisiae

Author: Kang, Min Hyung; Ni, Haiying; Jeffries, Thomas W.;

Date: 2003

Source: Applied biochemistry and biotechnology. Vol. 105-108 (2003): Pages 265-276

Publication Series: Miscellaneous Publication

Description: Candida boidinii produces significant amounts of xylitol from xylose, and assays of crude homogenates for aldose (xylose) reductase (XYL1p) have been reported to show relatively high activity with NADH as a cofactor even though XYL1p purified from this yeast does not have such activity. A gene coding for XYL1p from C. boidinii (CbXYL1) was isolated by amplifying the central region using primers to conserved domains and by genome walking. CbXYL1 has an open reading frame of 966 bp encoding 321 amino acids. The C. boidinii XYL1p is highly similar to other known yeast aldose reductases and is most closely related to the NAD(P)H-linked XYL1p of Kluyveromyces lactis. Cell homogenates from C. boidinii and recombinant Saccharomyces cerevisiae were tested for XYL1p activity to confirm the previously reported high ratio of NADH:NADPH linked activity. C. boidinii grown under fully aerobic conditions showed an NADH:NADPH activity ratio of 0.76, which was similar to that observed with the XYL1p from Pichia stipitis XYL1, but which is much lower than what was previously reported. Cells grown under low aeration showed an NADH:NADPH activity ratio of 2.13. Recombinant S. cerevisiae expressing CbXYL1 showed only NADH-linked activity in cell homogenates. Southern hybridization did not reveal additional bands. These results imply that a second, unrelated gene for XYL1p is present in C. boidinii.

Keywords: Candida boidinii, Saccharomyces cerevisiae, aldose reductase, CbXYL1, xylose reductase, NADH, NADPH, gene cloning, gene expression

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Kang, Min Hyung; Ni, Haiying; Jeffries, Thomas W. 2003. Molecular characterization of a gene for aldose reductase (CbXYL1) from Candida boidinii and its expression in Saccharomyces cerevisiae. Applied biochemistry and biotechnology. Vol. 105-108 (2003): Pages 265-276

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.