Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (2.5 MB bytes)

Title: Models that predict standing crop of stream fish from habitat variables: 1950-85.

Author: Fausch, K.D.; Hawkes, C.L.; Parsons, M.G.;

Date: 1988

Source: Gen. Tech. Rep. PNW-GTR-213. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 52 p

Publication Series: General Technical Report (GTR)

Description: We reviewed mathematical models that predict standing crop of stream fish (number or biomass per unit area or length of stream) from measurable habitat variables and classified them by the types of independent habitat variables found significant, by mathematical structure, and by model quality. Habitat variables were of three types and were measured on different scales in relation to stream channels: variables of drainage basins were measured on the coarsest scale from topographic maps; channel-morphometry and flow variables were measured in the field along transects perpendicular to flow; and habitat-structure, biological, physical, and chemical variables were measured on the finest scale in the field. We grouped the 99 reviewed models by the types of independent variables found significant during model development: (A) primarily drainage basin (5 models), (8) primarily channel morphometry and flow (16 models), (C) primarily habitat structure, biological, physical, and chemical (25 models), (D) a combination of several types of variables (39 models), and (E) tests of weighted usable area as a habitat model (14 models. Most models were linear or multiple linear regressions, or correlations, but a few were curvilinear functions (exponential or power). Some used multivariate techniques (principal components or factor analysis), and some combined independent variables into one or more indices. We judged model quality based on simple criteria of precision and generality: coefficient of determination, sample size, and degrees of freedom. Most models were based on data sets of fewer than 20 observations and, thus, also had fewer than 20 degrees of freedom. Most models with coefficients of determination of greater than 0.75 had fewer than 20 degrees of freedom, which led us to conclude that relatively precise models often lacked generality. We found that sound statistical procedures were often overlooked or were minimized during development of many models. Frequent problems were too small a sample size, possible bias caused by error in measuring habitat variables, using poor methods for choosing the best model, not testing models, using models based on observational data to predict standing crop, and making unrealistic assumptions about capture probabilities when estimating standing crop. The major biological assumption—that the fish population was limited by habitat rather than fishing mortality, interspecific competition, or predation—usually was not addressed. We found five main ways stream-fish-habitat models are used in fishery management. To be useful for analyzing land management alternatives, models must include variables affected by management and be specific for a homogeneous area of land.

Keywords: Stream fish, fish habitat, predictive models, stream-fish standing crop

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to pnw_pnwpubs@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Fausch, K.D.; Hawkes, C.L.; Parsons, M.G. 1988. Models that predict standing crop of stream fish from habitat variables: 1950-85. Gen. Tech. Rep. PNW-GTR-213. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 52 p

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.