Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (479 KB bytes)

Title: Aboveground biomass and nitrogen allocation of ten deciduous southern Appalachian tree species

Author: Martin, Jonathan G.; Kloeppel, Brian D.; Schaefer, Tara L.; Kimbler, Darrin L.; McNulty, Steven G.;

Date: 1998

Source: Canadian Journal of Forest Research. 28: 1648-1659. (Editor’s note: Steven G. McNulty, Southern Research Station project leader and scientist, co-authored this publication.)

Publication Series: Miscellaneous Publication

Description: Allometric equations were developed for mature trees of 10 deciduous species (Acer rubrum L.; Betula lenta L.; Carya spp.; Cornus florida L.; Liriodendron tulipifera L.; Oxydendrum arboreum (L.) DC.; Quercus alba L.; Quercus coccinea Muenchh.; Quercus prinus L.; and Quercus rubra L.) at the Coweeta Hydrologic Laboratory in Western North Carolina, U.S.A. These equations included the following dependent variables: stem wood mass, stem bark mass, branch mass, total wood mass, foliage mass, total biomass, foliage area, stem surface area, sapwood volume, and total tree volume. High correlation coefficients (R2) were observed for all variables versus stem diameter, with the highest being for total tree biomass, which ranged from 0.981 for Oxydendrum arboreum to 0.999 for Quercus coccinea. Foliage area had the lowest R2 values, ranging from 0.555 for Quercus alba to 0.962 for Betula lenta. When all species were combined, correlation coefficients ranged from 0.822 for foliage area to 0.986 for total wood mass, total tree biomass, and total tree volume. Species with ring versus diffuse/semiring porous wood anatomy exhibited higher leaf area with a given cross-sectional sapwood area, as well as lower total sapwood volume. Liriodendron tulipifera contained one of the highest foliar nitrogen concentrations and had consistently low branch, bark, sapwood, and heartwood nitrogen contents. For a tree diameter of 50 cm, Carya spp. exhibited the highest total nitrogen content, whereas Liriodendron tulipifera exhibited the lowest.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Martin, Jonathan G.; Kloeppel, Brian D.; Schaefer, Tara L.; Kimbler, Darrin L.; McNulty, Steven G. 1998. Aboveground biomass and nitrogen allocation of ten deciduous southern Appalachian tree species. Canadian Journal of Forest Research. 28: 1648-1659. (Editor’s note: Steven G. McNulty, Southern Research Station project leader and scientist, co-authored this publication.)

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.