Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.1 MB bytes)

Title: Carbon dioxide and water vapor exchange in a warm temperate grassland

Author: Novick, K.A.; Stoy, P.C.; Katul, G.G.; Ellsworth, D.S.; Siqueira, M.B.S.; Juang, J.; Oren, R.;

Date: 2004

Source: Oecologia 138: 259-274

Publication Series: Scientific Journal (JRNL)

Description: Grasslands cover about 40% of the ice-free global terrestrial surface, but their contribution to local and regional water and carbon fluxes and sensitivity to climatic perturbations such as drought remains uncertain. Here, we assess the direction and magnitude of net ecosystem carbon exchange (NEE) and it components, ecosystem carbon assimilation (Ac and ecosystem respiration (FE), in a southeastern United States grassland ecosystem subject to periodic drought and harvest using a combination of eddy-covariance measurements and model calculations. We modeled Ac and evapotranspiration (ET) using a big-leaf canopy scheme in conjunction with ecophysiological and radiative transfer principles, and applied the model to assess the sensitivity of NEE and ET to soil moisture dynamics and rapid excusions in leaf area index (LAI) following grass harvesting. Model results closely match eddy-covariance flux estimations on daily, and longer, time steps. Both model calculations and eddy-covariance estimates suggest that the grassland became a net source of carbon to the atmosphere immediately following the harvest, but a rapid recovery in LAI maintained a marginal carbon sink during summer. However, when itegrated over the year, this grassland ecosystem was a net C source (97 g C m-2 a-1) due to a minor imbalance between large Ac (-1.202 g C m-2 a-1 and RE (1,299 g C m-2 a-1) fluxes. Mild drought conditions during the measurement period resulted in many instances of low soil moisture (θ<0.2 m3m-3), which influenced Ac and thereby NEE by decreasing stomatal conductance. For this experiment, low θ had minor impact on RE. Thus, stomatal limitations to Ac were teh primary reason that this grassland was a net C source. In the absence of soil moisture limitations, model calculations suggest a net C sink of -65 g C m-2a-1 assuming the LAI dynamics and physiological properties are unaltered. These results, and the results of other studies, suggest that perturbations to the hydrologic cycle are key determinants of C cycling in grassland ecosystems.

Keywords: Net ecosystem exchange, ecosystem modeling, evapotranspiration, eddy-covariance, grassland ecosystems

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Novick, K.A.; Stoy, P.C.; Katul, G.G.; Ellsworth, D.S.; Siqueira, M.B.S.; Juang, J.; Oren, R. 2004. Carbon dioxide and water vapor exchange in a warm temperate grassland. Oecologia 138: 259-274

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.